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Abstract

Multisymplectic (MS) integrators, i.e. numerical schemes which exactly preserve a discrete space–time symplectic struc-
ture, are a new class of structure preserving algorithms for solving Hamiltonian PDEs. In this paper we examine the dis-
persive properties of MS integrators for the linear wave and sine-Gordon equations. In particular a leapfrog in space and
time scheme (a member of the Lobatto Runge–Kutta family of methods) and the Preissman box scheme are considered.
We find the numerical dispersion relations are monotonic and that the sign of the group velocity is preserved. The group
velocity dispersion (GVD) is found to provide significant information and succinctly explain the qualitative differences in
the numerical solutions obtained with the different schemes. Further, the numerical dispersion relations for the linearized
sine-Gordon equation provides information on the ability of the MS integrators to capture the sine-Gordon dynamics. We
are able to link the numerical dispersion relations to the total energy of the various methods, thus providing information
on the coarse grid behavior of MS integrators in the nonlinear regime.
� 2008 Elsevier Inc. All rights reserved.

Keywords: Multisymplectic methods; Box schemes; Leapfrog method; Dispersion relation; Sine-Gordon equation; Double-pole soliton
1. Introduction

Symplectic integrators have proven to be robust, efficient and very accurate in preserving the long-time
behavior of solutions of Hamiltonian ODEs [11]. These results made it natural to consider extending symplec-
ticity to Hamiltonian PDEs and to develop the concept of a space–time multisymplectic structure [15,4,6]. In
[15] Marsden and Shkoller developed the multisymplectic structure of Hamiltonian PDEs from a Lagrangian
formulation using a variational principle. In this paper we adopt the approach of Bridges and Reich and con-
sider Hamiltonian PDEs of the form [6]
0021-9
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Lzt þ Kzx ¼ rzS; z 2 Rd ; ð1Þ

where L and K are d � d, skew-symmetric matrices, and S : Rd ! R is a smooth function of the state variable z.
System (1) is multisymplectic (MS) in the sense that associated with L and K are the two-forms,
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x ¼ 1

2
ðdz ^ LdzÞ; j ¼ 1

2
ðdz ^ K dzÞ; ð2Þ
which define a space–time multisymplectic structure governed by the multisymplectic conservation law
(MSCL)
otxþ oxj ¼ 0: ð3Þ

Eq. (3), which is a local property, is derived directly from (1) and generalizes the symplectic conservation law
of Hamiltonian ODEs. The multisymplectic structure naturally gives rise to local conservation laws typically
associated with Nöthers theorem [15]. In fact, in the presence of a MS structure, the invariance of the Ham-
iltonian SðzÞ with respect to space–time shifts implies the local energy and momentum conservation laws,
LECL : otE þ oxF ¼ 0; E ¼ SðzÞ þ 1

2
zT

x Kz; F ¼ � 1

2
zT

t Kz; ð4Þ

LMCL : otI þ oxG ¼ 0; G ¼ SðzÞ þ 1

2
zT

t Lz; I ¼ � 1

2
zT

x Lz; ð5Þ
respectively.
Multisymplectic integrators are defined to be discretizations of (1) for which a discrete form of the MSCL

(3) holds. A thorough analysis of multisymplectic integrators is far from complete as even this definition is in
the process of being refined. For example, partitioned Runge–Kutta methods applied to (1) formally satisfy
discrete multisymplectic conservation laws, yet do not always produce well defined numerical schemes [8].
Additional constraints such as requiring the scheme to be compact or to be a one step method in space
and time have been proposed [20,10]. An open question is which properties, such as compactness or conser-
vation of wave action or preservation of the dispersion relation, are important for a multisymplectic method to
inherit under discretization [9]. Nonetheless, excellent long-time preservation of the local energy and momen-
tum conservations laws has been established in numerical studies of multisymplectic integrators for the non-
linear Schrödinger equation [19,12]. The improved preservation of the local conservation laws is also reflected
in an improved preservation of complicated phase space structures [14].

In the study of wave motion the dispersion relation and group velocity are fundamental concepts. A wave
packet is a superposition of modes with different wavenumbers. Errors in the phase and group velocities lead
to modes traveling with an incorrect speed which can destroy the qualitative features of the solution [21].
Recent results on symplectic and multisymplectic schemes for the Korteweg de Vries equation show that
the MS Preissman box scheme, a member of the Gauss–Legendre Runge–Kutta (GLRK) family, qualitatively
preserve the dispersion relation of any hyperbolic system [2]. This result was extended for linear PDEs to cover
general s-stage GLRK methods [10]. It was found that the discrete dispersion relation for GLRK methods is
monotonic and the group velocity is of constant sign.

From the perspective of integrable nonlinear PDEs, e.g. the sine-Gordon or the Korteweg de Vries equa-
tions, the dispersion relation of the associated linearized equation is especially significant. Initial-value prob-
lems for integrable nonlinear PDEs can be solved by the inverse scattering transform (IST) [1]. The first step is
to calculate the scattering data of the waveform uðx; t0Þ via the direct scattering transform. The scattering data
is then evolved to any time t� according to equations that depend on the dispersion relation of the associated
linearized equation. The solution is then recovered by the inverse scattering transform.

In this paper we further examine the dispersive properties of MS integrators for the linear wave and sine-Gor-
don equations. Specifically a leapfrog in space and time scheme (MSLF), a member of the Lobatto Runge–Kutta
family of methods, and the Preissman box (MSBS) scheme are examined, as well as, for comparative purposes, a
standard explicit Runge–Kutta scheme. For the multisymplectic schemes we show the numerical dispersion rela-
tions are monotonic, the sign of the group velocity is preserved, and obtain a relationship between the group
velocities of the different numerical schemes. Further, we find the group velocity dispersion (GVD) provides sig-
nificant information and succinctly explains the differences in the numerical solutions obtained with the different
schemes, e.g. why some schemes ‘‘shed” oscillatory waves off the front of the pulse and others off the back.

Finally, we examine whether the numerical dispersion relations for the linearized sine-Gordon (sG) equation
provide information on the ability of the MS integrators to capture the nonlinear sine-Gordon dynamics. For
the kink–antikink solutions of the sine-Gordon equation we observe shedding of oscillatory waves which, as for
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the linear wave equation, can be explained through the errors in the group velocity. A more striking example of
the impact of errors in the dispersion relation is provided by the double-pole soliton solution of the sine-Gordon
equation. We observe distinctly different convergence patterns for the MSBS and MSLF schemes. The MSBS
solutions exhibit breather-like behavior, while the MSLF solutions exhibit kink–antikink behavior. From the
dispersion analysis we are able to link the numerical dispersion relations to the total energy of the various meth-
ods, thus providing information on the coarse grid behavior of MS integrators in the nonlinear regime.

2. Multisymplectic PDEs

2.1. The wave and sine-Gordon equations

An example of a MS PDE is provided by the equation
utt � uxx þ v sin u ¼ 0; ð6Þ

where v allows us to study both the wave (v ¼ 0) and sine-Gordon (v ¼ 1) equations. By introducing new vari-
ables, v ¼ ut and w ¼ �ux, Eq. (6) can be written in MS form where
L ¼
0 1 0
�1 0 0
0 0 0

2
4

3
5; K ¼

0 0 1
0 0 0
�1 0 0

2
4

3
5; z ¼

u
v
w

2
4

3
5; S ¼ 1

2
ðw2 � v2Þ þ v cos u: ð7Þ
By observing that v and w satisfy the extra constraint wt þ vx ¼ �uxt þ utx ¼ 0 and introducing a Lagrange
multiplier p satisfying px ¼ �vþ ut and pt ¼ wþ ux, an improved MS form can be obtained where
L ¼

0 1 0 0
�1 0 0 0
0 0 0 1
0 0 �1 0

2
664

3
775; K ¼

0 0 1 0
0 0 0 1
�1 0 0 0
0 �1 0 0

2
664

3
775; z ¼

u
v
w
p

2
664

3
775 ð8Þ
and SðzÞ is the same as before [5,14]. This example shows that the MS structure of a PDE is not unique.
Both MS formulations have local energy and momentum conservation laws given by [6,14]
otE þ oxF ¼ 0; where E ¼ 1

2
ðv2 þ w2Þ � v cos u; F ¼ vw ð9Þ
and
otI þ oxG ¼ 0; where I ¼ vw; G ¼ 1

2
ðv2 þ w2Þ þ v cos u: ð10Þ
The existence of integrals of motion and local conservation laws is an important feature of a system. If peri-
odic boundary conditions are considered, the global energy and momentum are given by
E ¼
Z L

0

E dx ¼
Z L

0

1

2
ðv2 þ w2Þ � cos udx; I ¼

Z L

0

I dx ¼
Z L

0

vwdx:
3. Multisymplectic discretizations

In this section we construct MS discretizations by concatenating symplectic discretizations in space and
time.

3.1. MS leapfrog scheme

We begin by introducing the following finite difference operators
Dxz
n
j ¼

zn
jþ1 � zn

j

Dx
; Dtz

n
j ¼

znþ1
j � zn

j

Dt
ð11Þ



C.M. Schober, T.H. Wlodarczyk / Journal of Computational Physics 227 (2008) 5090–5104 5093
and averaging operators
Mxz
n
j ¼

1

2
ðzn

jþ1 þ zn
j Þ; Mtz

n
j ¼

1

2
ðznþ1

j þ zn
j Þ: ð12Þ
Applying symplectic Euler discretizations, in both space and time, to Eq. (1) gives the following discretization
LþDtz
n
j þ L�Dtz

n�1
j þ KþDxz

n
j þ K�Dxz

n
j�1 ¼ rzSðzn

j Þ; ð13Þ
where L� and K� are defined such that
L ¼ Lþ þ L�; L� ¼ �ðLþÞT ; K ¼ Kþ þ K�; K� ¼ �ðKþÞT :
Proposition 1. Scheme (13) is a MS discretization.

Proof. Here we present a more detailed version of the proof given by Moore and Reich [16]. To show that (13)
is a MS discretization we take the wedge product between the variational equation and dzn

j

dzn
j ^ ðLþDtdzn

j þ L�Dtdzn�1
j þ KþDxdzn

j þ K�Dxdzn
j�1Þ ¼ dzn

j ^ Szzdzn
j : ð14Þ
Since Szz is symmetric, the right hand side vanishes. The time-derivative part of (14) becomes
dzn
j ^ ðLþDtdzn

j þ L�Dtdzn�1
j Þ ¼ dzn

j ^ LþDtdzn
j þ Dtdzn�1

j ^ Lþdzn
j

¼ dzn
j ^ Lþ

dznþ1
j � dzn

j

Dt

 !
þ

dzn
j � dzn�1

j

Dt

 !
^ Lþdzn

j

¼ 1

Dt
ðdzn

j ^ Lþdznþ1
j � dzn�1

j ^ Lþdzn
j Þ ¼ Dtðdzn�1

j ^ Lþdzn
j Þ

¼ Dtðdzn
j ^ L�dzn�1

j Þ ¼
1

2
Dtðdzn�1

j ^ Lþdzn
j þ dzn

j ^ L�dzn�1
j Þ:
Similarly, the space-derivative part of (14) becomes
dzn
j ^ KþDxdzn

j þ dzn
j ^ K�Dxdzn

j�1 ¼
1

2
Dxðdzn

j�1 ^ Kþdzn
j þ dzn

j ^ K�dzn
j�1Þ:
From this we obtain the discrete MS conservation law
Dtx
n
j þ Dxj

n
j ¼ 0; ð15Þ
where
xn
j ¼

1

2
ðdzn�1

j ^ Lþdzn
j þ dzn

j ^ L�dzn�1
j Þ; ð16aÞ

jn
j ¼

1

2
ðdzn

j�1 ^ Kþdzn
j þ dzn

j ^ K�dzn
j�1Þ: � ð16bÞ
Notice that (15) is a symplectic Euler discretization, in both space and time, of the MSCL (3), proving that
(13) is indeed a MS discretization. For PDEs involving only second derivatives this scheme provides symplec-
tic leapfrog discretizations in space and time. We refer to (13) as the MS leapfrog (MSLF) scheme when
applied to the sine-Gordon and linear wave equations.
3.2. MS Preissman box scheme

Using symplectic implicit midpoint discretizations in space and in time yields the following box scheme,
LDtMxz
n
j þ KDxMtz

n
j ¼ rzSðMtMxz

n
j Þ; ð17Þ
which has been shown to be a MS discretization [6,19] and which we denote as MSBS.
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3.3. MS Discretizations for the wave and sine-Gordon equations

3.3.1. MSLF for the wave and sine-Gordon equations

To obtain the leapfrog MS discretization (13) of the sine-Gordon Eq. (7) we use the matrices
Lþ ¼
0 1 0

0 0 0

0 0 0

2
64

3
75; Kþ ¼

0 0 1

0 0 0

0 0 0

2
64

3
75; ð18Þ
which in system form becomes
Dtvn
j þ Dxwn

j ¼ �v sinðun
j Þ; ð19aÞ

Dtun�1
j ¼ vn

j ; ð19bÞ
Dxun

j�1 ¼ �wn
j : ð19cÞ
System (19) can be reduced to the single equation
D2
t un�1

j � D2
xun

j�1 þ v sin un
j ¼ 0: ð20Þ
3.3.2. MSBS for the wave and sine-Gordon equations

Applying box scheme (17) to the sine-Gordon Eq. (8) results in the system
DtMxvn
j þ DxMtwn

j ¼ �v sinðMtMxun
j Þ; ð21aÞ

DtMxun
j � DxMtpn

j ¼ MtMxvn
j ; ð21bÞ

DtMxpn
j � DxMtun

j ¼ MtMxwn
j ; ð21cÞ

DtMxwn
j þ DxMtvn

j ¼ 0; ð21dÞ
which can also be reduced to the single equation
D3
t M2

xun
j � DtD2

xM2
t un

j þ vDtMtMx sinðMtMxun
j Þ ¼ 0: ð22Þ
3.3.3. Non-symplectic explicit Runge–Kutta scheme

For comparison purposes we consider the discretization obtained by using the symplectic Euler in space
together with a standard second order explicit Runge–Kutta method in time, and denote this scheme as ERK.

4. Dispersion relations

The general solution to a linear PDE can be expressed as
uðx; tÞ ¼
Z 1

�1
AðkÞeiðkx�xðkÞtÞ dk; ð23Þ
where xðkÞ can be found by assuming each mode (or ‘‘wave”) Aeiðkx�xtÞ is itself a solution of the linear PDE,
resulting in a dispersion relation
Dðx; kÞ ¼ 0:
For example, the sine-Gordon equation linearized about u ¼ 0,
utt � uxx þ vu ¼ 0 ð24Þ

has a dispersion relation given by
Dðx; kÞ ¼ x2 � k2 � v ¼ 0: ð25Þ
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Each wave travels with a phase velocity vpðkÞ ¼ x=k. In a non-dispersive system, such as the wave equation
(v ¼ 0), every wave has the same phase velocity (vp ¼ c0) and the solution for t > 0 is just the initial condition
translated through space:
uðx; tÞ ¼
Z 1

�1
AðkÞeikðx�c0tÞdk ¼ uðx� c0t; 0Þ:
In dispersive systems, the important propagation velocity is the group velocity, V gðkÞ ¼ w0ðkÞ, which is usually
a function of the wavenumber k. In this case w00ðkÞ 6¼ 0 and waves with different wavenumbers travel with dif-
ferent phase velocities. This results in group velocity dispersion (GVD), which is proportional to w00ðkÞ, and
ultimately causes spatial spreading of the wave packet. Using asymptotic analysis one can show that for slowly
varying systems, and for sufficiently long times, each wavenumber k dominates the solution in a region defined
by x � w0ðkÞt with the dominant contribution given by
AðkÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2p
tjw00ðkÞj

s
exp i kx� wðkÞt � p

4
sgnw00ðkÞ

� �n o
:

Because of their significance, we use the group velocity and the GVD as diagnostics for interpreting the
numerical results.

4.1. Numerical dispersion relations

The dispersive properties of the discretizations can be studied by calculating their numerical dispersion rela-
tions. To do so, we start with the discretizations of the linearized sine-Gordon/ wave Eq. (24) associated with
the MSBS, MSLF, and ERK schemes in their single equation format:
MSBS : D3
t M2

xun
j � DtD2

xM2
t un

j þ vDtM2
t M2

xun
j ¼ 0; ð26aÞ

MSLF : D2
t un�1

j � D2
xun

j�1 þ vun
j ¼ 0; ð26bÞ

ERK : D2
t un�1

j � D2
xun

j�1 þ vun
j ¼ �

1

4
Dt2D4

xun�1
j�2 ð26cÞ
and assume a discrete general solution of the form
X
�k

Aeið�k j��x nÞ; �k ¼ kDx; �x ¼ xDt; ð27Þ
where as before, each mode is a solution provided �k and �x satisfy a numerical dispersion relation
DN ð�x; �kÞ ¼ 0:
For Eqs. (26), the corresponding numerical dispersion relations are given by
MSBS :
2

Dt
tan

�x
2

� �2

� 2

Dx
tan

�k
2

� �2

� v ¼ 0; ð28aÞ

MSLF :
2

Dt
sin

�x
2

� �2

� 2

Dx
sin

�k
2

� �2

� v ¼ 0; ð28bÞ

ERK :
2

Dt
sin

�x
2

� �2

� 2

Dx
sin

�k
2

� �2

� v ¼ Dt2

4

2

Dx
sin

�k
2

� �2

þ v

" #2

; ð29Þ
where (29) is to leading order. The MSBS and MSLF schemes preserve the form of the analytical dispersion
relation. Generalizing [3,10] we find the exact relationship is given by the following proposition:

Proposition 2. The MS schemes (28) qualitatively preserve the dispersion relation of the linear PDE. Specifically,

there exist diffeomorphisms w1 and w2 satisfying the exact dispersion relationship
DN ð�x; �kÞ ¼ Dðw1ð�xÞ;w2ð�kÞÞ ¼ w2
1 � w2

2 � v ¼ 0; ð30Þ
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where
0

0.5

1

1.5

2

2.5

3

w

a

Fig. 1.
k ¼ 0:7

0
−1

0

1

2

3

4

5

6

7

8

9

dw
/d

k

a

MSBS : ðw1ð�xÞ;w2ð�kÞÞ ¼
2

Dt
tan

�x
2
;

2

Dx
tan

�k
2

� �
; ð31aÞ

MSLF : ðw1ð�xÞ;w2ð�kÞÞ ¼
2

Dt
sin

�x
2
;

2

Dx
sin

�k
2

� �
ð31bÞ
for �p < �k < p, and �p < �x < p.

Diffeomorphisms can also be found for other MS integrators such as the MS box scheme applied to (7)
rather than (8), and the MS scheme obtained by applying an implicit midpoint step in time and a leapfrog
discretization in space [18].

4.2. The linear wave equation

The significance of Proposition 2 for the non-dispersive wave equation (Eq. (24) with v ¼ 0) can be seen in
Figs. 1–3 which show the dispersion curves �xð�kÞ, the group velocity �x0ð�kÞ, and the group velocity dispersion
�x00ð�kÞ for the exact (25) and numerical (28a), (28b), (29) dispersion relations for three different values of the
mesh ratio k ¼ Dt=Dx, i.e. k ¼ 0:1; 0:4; 0:7. The exact relation is given by �x ¼ k�k. Each plot is shown only for
0 6 �k 6 p and 0 6 �x 6 p since the dispersion relations are symmetric with respect to the origin.

Several observations can be made. The first is that the existence of diffeomorphisms (31) is not enough to
preserve the qualitative features of the analytical solution. Since the exact dispersion relation is linear and the
numerical dispersion relations are nonlinear, all of the schemes introduce numerical dispersion. Secondly, the
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Dispersion relations for the MSBS, MSLF and ERK discretizations of linear wave equation for (a) k ¼ 0:1, (b) k ¼ 0:4 and (c)
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Fig. 2. Group velocities for the MSBS, MSLF and ERK schemes for (a) k ¼ 0:1, (b) k ¼ 0:4 and (c) k ¼ 0:7.
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Fig. 3. Group velocity dispersion curves for the MSBS, MSLF and ERK schemes for (a) k ¼ 0:1, (b) k ¼ 0:4 and (c) k ¼ 0:7. Since �x00 6� 0
the discretizations introduce artificial dispersion.
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dispersive properties of the schemes are distinct. The dispersion curve for the MSBS (MSLF) scheme is above
(below) the analytical dispersion curve. That is,
�xBS > �xanalytic > �xLF 8�k 2 ð0; pÞ and k 2 ð0; 1Þ: ð32Þ

Although the dispersion curves for MSLF and ERK appear very close for small k, this is not always the case
as the dispersion curve for ERK transitions from above to below the analytical curve at a value of the wave-
number �k that depends on k.

The dispersion curves are all monotonically increasing at rates given by their numerical group velocities (see
Fig. 2)
MSBS : �x0ð�kÞ ¼ k
1þ tan2 �k=2

1þ k2 tan2 �k=2

� �
> k 8�k; ð33aÞ

MSLF : �x0ð�kÞ ¼ k
1� sin2 �k=2

1� k2 sin2 �k=2

 !1=2

< k 8 �k; ð33bÞ

ERK : �x0ð�kÞ ¼ k
cos �k=2ð1þ 2k2 sin2 �k=2Þ

ð1� 2k4 sin4 �k=2� k6 sin6 �k=2Þ1=2
ð33cÞ
for 0 < �k < p. Fig. 2 shows the group velocities �x0ð�kÞ for the MSBS, MSLF and ERK schemes as well as the
exact group velocity (which is a constant) for k ¼ 0:1; 0:4; 0:7. We find that 8k < 1 and 8�k 2 ð0; pÞ;
V MSBS
g > V analytic

g > V MSFL
g > 0;
where to simplify notation we let �x0ð�kÞ ¼ V scheme
g . As with the dispersion curves, the group velocity for ERK

transitions from above to below the analytical group velocity at a value of the wavenumber �k that depends on
k. Moreover, the error in �xð�kÞ is inversely related to k for the MSBS and directly related to k for the MSLF.
For MSBS (MSLF), the error in the group velocity is a decreasing (increasing) function of k.

All the numerical group velocities are positive and so this feature alone does not explain the different behav-
ior observed in the numerical simulations of the wave and sine-Gordon equations (see Section 4.3). What can
be easily correlated to the behavior of the schemes is the sign of the second derivative (see Fig. 3)
MSBS : �x00ð�kÞ ¼ kð1� k2Þ tan �k=2
sec �k=2

1þ k2 tan2 �k=2

� �2

> 0; ð34aÞ

MSLF : �x00ð�kÞ ¼ � 1

2
kð1� k2Þ sin �k=2

ð1� k2 sin2 �k=2Þ3=2
< 0 ð34bÞ
for 0 < �k < p. Fig. 3 shows the group velocity dispersion curves, �x00ð�kÞ, for the MSBS, MSLF and ERK schemes
for k ¼ 0:1, k ¼ 0:4 and k ¼ 0:7. For MSBS, �x00ð�kÞ > 0 8�k, and the group velocity curve is monotonically
increasing. The higher the wavenumber �k of a mode, the faster the mode travels. Further, since �x0ð0Þ ¼ k, all
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the numerical modes travel faster than the analytical ones. For MSLF, �x00ð�kÞ < 0 8�k, and the group velocity
curve is monotonically decreasing. Since �x0ð0Þ ¼ k, all the numerical modes travel slower than the analytical
ones.

These results can be summarized in the following corollary:

Corollary 1. Consider the numerical solution of the non-dispersive wave equation given by the MSBS and MSLF

schemes. Then the numerical dispersion relations satisfy

1. The dispersion curve for the MSBS (MSLF) scheme is above (below) the analytical dispersion curve.
2. The sign of the analytical group velocity is preserved under the box and leapfrog schemes. Furthermore
�xBS

d�k
> k >

�xLF

d�k
> 0;

where k corresponds to the analytical group velocity in the �k–�x coordinate system.

3. The error in the group velocity due to the box (leapfrog) scheme is a decreasing (increasing) function of k.

4. The box (leapfrog) scheme introduces positive (negative) dispersion.
4.3. The linearized sine-Gordon equation

The linearized sine-Gordon equation provides another example of the relevance of the numerical dispersion
relation. Fig. 4(a) shows (28a) and (29), the numerical dispersion relations for (24) with (v ¼ 1). From a cursory
inspection of Fig. 4(a), the curves do not appear that different from the dispersion relation for the wave equation
in Fig. 1. However, in Fig. 4(b) a magnification of the error in the dispersion relation, � ¼ �xnum � �xanalytic, reveals
that for small values of �k the numerical dispersion relations for the wave and linearized sG equations differ in a
small but significant aspect. For the linearized sG, the inequality relating the numerical and analytical dispersion
relations is not valid for all values of �k, as it was for the wave Eq. (32). Instead, for small �k, the inequality is
reversed. We obtain
0
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Fig. 4.
�BS, �L
�xBS < �xanalytic < �xLF; �k 2 ð0; �kkÞ and k 2 ð0; 1Þ; ð35aÞ
�xBS > �xanalytic > �xLF; �k 2 ð�kk; pÞ and k 2 ð0; 1Þ; ð35bÞ
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where �kk is an increasing function of k. A similar inequality holds when �xLF is replaced by �xRK in equations
(35).

Inequalities (35) are significant when numerically integrating the linearized sG equation as the total energy
can be characterized in terms of the group velocity �x. Following Whitham [22], we find that the exact total
energy is
−
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

u

−0.

0.

0.

0.

0.

u

Eanalytic ¼ 2p
Z p

0

½x2U2
0ðjÞ þ U2

1ðjÞ�dj; ð36Þ
where U0 and U1 are the Fourier coefficients for the initial conditions uðx; 0Þ and utðx; 0Þ. Since initially the
energy is concentrated in the lower modes, from Fig. 4(b), we conclude that
EMSBS < Eanalytic < EMSLF: ð37Þ

Eq. (37) also holds when EMSLF is replaced by EERK. The energy inequality is a critical issue in the simulation of
non-dispersive solutions of the sG equation, where their existence relies on the balance of nonlinear and dis-
persive effects and the preservation of energy. Once this balance is altered, changes in the energy can result in
significant changes in the solutions.

5. Numerical examples

5.1. The linear wave equation

To illustrate how errors in the dispersion relation associated with MS discretization impact traveling solu-
tions we consider the wave Eq. (24) (v ¼ 0) with whole line B.C. for initial data characterized by a broad Fou-
rier spectrum,
uðx; 0Þ ¼ f ðxÞ ¼ expð�3200x2Þ; utðx; 0Þ ¼ 0; ð38Þ

as shown in Fig. 5(a). Fig. 5(b–d) show the numerical results obtained with MSBS, MSLF, and ERK, respec-
tively, at t ¼ 0:6 with J ¼ 256, k ¼ 0:1 and a simulation period of L ¼ 2. One would expect to obtain two wave
forms of the same shape as the initial Gaussian data, with smaller amplitudes and traveling in opposite direc-
tions, i.e. uðx; tÞ ¼ 1

2
½f ðxþ ctÞ þ f ðx� ctÞ�. Instead, we find the initial waveform rapidly disperses into a peri-

odic wave-train. This phenomenon is explained by the error in the group velocity due to the discretizations.
Since the error in the propagation speed for the MSBS scheme is positive (Fig. 2(a)), the higher wavenumber
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Fig. 5. Dispersive error in the linear wave equation, J ¼ 256, k ¼ 0:1.
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modes travel faster than the analytical ones, while for the MSLF and ERK schemes the error is negative for
the higher wavenumber modes, indicating they travel slower. In the numerical simulations the MSBS wave-
front travels slower than the high-frequency oscillations as predicted by the analysis (Fig. 5(b)) whereas the
opposite phenomenon is observed for MSLF and the ERK schemes (Fig. 5(c and d)). The MSBS high mode
oscillations travel further than the MSLF or ERK oscillations due to a larger magnitude in the error of the
group velocity.

Fig. 6 provides a comparison of the results obtained with MSLF and ERK for initial data (38) at t ¼ 0:2
with k ¼ 0:7, J ¼ 512 and a simulation period of L ¼ 2. Although the solutions obtained with the MSLF and
ERK are close for k ¼ 0:1, this is not the case for larger k. The front of the ERK solution, comprised of the
low wavenumber modes, travels slightly faster than that of the MSLF (or analytical) solution, while high
mode oscillations develop behind the structure when using ERK. To display these features more effectively
Fig. 6(a) zooms in on the peaks of the waveform while Fig. 6(b) zooms in on the base of the left traveling
waveform centered at x ¼ �0:2. Fig. 6(a) shows that, in contrast with the MSLF solution, the amplitude of
the ERK solution is growing, and the solution breaks down shortly afterwards. The MSLF correctly resolves
the amplitude of the solution, has a better resolution of the group velocity and does not yet have high-fre-
quency oscillations. The main disadvantage of using the ERK scheme is that, unlike the multisymplectic
schemes MSLF and MSBS which are stable for k 6 1 [17], the ERK is unstable and the dispersive errors
are quickly overshadowed by the instability.

5.2. The sine-Gordon equation

Numerically induced dispersive effects such as high-frequency oscillations are also observed in simulations
of the nonlinear sine-Gordon equation. The sine-Gordon equation admits families of non-dispersive multi-sol-
iton solutions which can be obtained using either the inverse scattering transform or the Backlund transform
[1]. For example, the 2-soliton solution
0

0

0

u

uðx; tÞ ¼ 4 tan�1½t sechðxÞ�; �1 < x <1 ð39Þ

called the double-pole soliton, represents a special limiting case between a kink–antikink solution and a
breather solution. Initial data for this family of solutions is given by
uðx; 0Þ ¼ 0; utðx; 0Þ ¼ 4csechðcxÞ; ð40Þ

where the breathers, the double-pole soliton, and the kink–antikinks, correspond to 0 < c < 1, c ¼ 1, and
c > 1, respectively. Breathers are stationary waves that are localized in space and periodic in time, while
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Fig. 6. Errors due to the transition point in the dispersion relation for ERK.
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kink–antikinks are two-soliton waves consisting of two fronts traveling in opposite directions in space. The
energy, equal to 16c, for this family of solutions is an increasing function of c, i.e. breathers are of lower energy
than the double-pole soliton which in turn has lower energy than kink–antikink solutions.

Using initial values (40), with c ¼ 2 for x 2 ½�20; 20� and periodic boundary conditions, we solve the sine-
Gordon equation using the MSBS and MSLF schemes with J ¼ 2n; n ¼ 6; . . . ; 10, and k ¼ 0:1; 0:4; 0:7; 0:8,
and 0.95. Although the kink–antikink structure is resolved by these schemes, the insets in Fig. 7(a) and (b)
show small oscillatory waves developing. In the enlargements we see that the oscillations develop ahead
(MSBS) or behind (MSLF) the kink–antikink front, just as in the previous linear wave equation example.
These spurious effects are explained by the numerical dispersion relation associated with each MS discretiza-
tion (see Fig. 4(a)).

Assuming a sufficiently small k for a given timeframe to prevent the growth of instabilities, the dispersive
effects in solitons using the ERK is qualitatively similar to MSLF in that the oscillatory waves that develop on
the kink–antikink structure are behind the front as they were for the MSLF.

A more dramatic example of the impact errors in the dispersion relation have on the solution is provided by
the double-pole soliton of the sine-Gordon equation. Consider the double-pole initial data
uðx; 0Þ ¼ 0; utðx; 0Þ ¼ 4sechðxÞ; ð41Þ

with x 2 ½�20; 20� and periodic boundary conditions. The solutions obtained using the MSBS and MSLF
schemes for the sine-Gordon equation for 0 6 t 6 100 are shown in Fig. 8. Although the numerical solutions
converge to the double-pole soliton as the mesh is refined (here k ¼ 0:1), there is a notable difference in the
qualitative features of the solution depending upon which numerical method was applied. Fig. 8(a) shows that
a breather solution is obtained with the MSBS, while Fig. 8(b) shows a kink–antikink solution is obtained with
the MSLF scheme. These distinct discrete solutions are always obtained with the respective schemes as the
mesh is refined, independent of the choice of either k, Dx or Dt. For k ¼ 0:1 the ERK scheme produces
kink–antikink solutions similar to the MSLF solutions and are not shown since the surface plots are visually
identical to those in Fig. 8(b). The ERK scheme should not be used for large k as it is unstable and large ampli-
tude oscillations destroy the solution on this timeframe.

Convergence to the double-pole soliton solution from different nearby solutions can be explained by ana-
lyzing the total energy, E, associated with the linearized sine-Gordon equation. Initially, in the linear regime,
the double-pole soliton evolves according to the linearized sine-Gordon equation with total energy given by
Eq. (36). The numerical total energies are related to the analytical energy by inequality (37). On the other
hand, the energies associated with breathers, double-poles and kink–antikinks are related to each other by
(see for example, [1])
Ebreather < Edouble-pole < Ekink–antikink:
From this we conclude the numerical solution obtained with the MSBS scheme will be a breather solution
while the one obtained with the MSLF or ERK schemes will be a kink–antikink solution. Fig. 9(a and b) show
the Hamiltonian functional discretized to fourth order accuracy. Fig. 9(a) shows the numerical energy of the
Fig. 7. Dispersive effects in solitons.



Fig. 8. Convergence of the numerical solution obtained with (a) the MSBS or (b) the MSLF scheme to the double-pole soliton solution of
the sine-Gordon equation.
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MSBS (dashed line) is less than or equal to the analytical one (solid line) for all times, while Fig. 9(b) shows the
numerical energies of the MSLF and ERK schemes (dotted and dashed line, respectively) are greater than or
equal to the analytical one. Again, this feature is independent of the mesh size and confirms the previous dis-
persion and energy analysis, that the perturbation introduced by the MS map forces the numerical solutions to
lie in the region of the phase space that corresponds to a lower energy state (breather ) or a higher energy state
(kink–antikink) depending solely upon the discretization.
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